2,707 research outputs found

    Pomeranchuk effect and spin-gradient cooling of Bose-Bose mixtures in an optical lattice

    Full text link
    We theoretically investigate finite-temperature thermodynamics and demagnetization cooling of two-component Bose-Bose mixtures in a cubic optical lattice, by using bosonic dynamical mean field theory (BDMFT). We calculate the finite-temperature phase diagram, and remarkably find that the system can be heated from the superfluid into the Mott insulator at low temperature, analogous to the Pomeranchuk effect in 3He. This provides a promising many-body cooling technique. We examine the entropy distribution in the trapped system and discuss its dependence on temperature and an applied magnetic field gradient. Our numerical simulations quantitatively validate the spin-gradient demagnetization cooling scheme proposed in recent experiments.Comment: 9 pages, 8 figure

    A Behavioral Model System for Implicit Mobile Authentication

    Get PDF
    Smartphones are increasingly essential to users’ everyday lives. Security concerns of data compromises are growing, and explicit authentication methods are proving to be inconvenient and insufficient. Meanwhile, users demand quicker and more secure authentication. To address this, a user can be authenticated continuously and implicitly, through understanding consistency in their behavior. This research project develops a Behavioral Model System (BMS) that records users’ behavioral metrics on an Android device and sends them to a server to develop a behavioral model for the user. Once a strong model is generated with TensorFlow, a user’s most recent behavior is queried against the model to authenticate them. The model is tested across its metrics to evaluate the reliability of BMS

    Evidence for a Black Hole and Accretion Disk in the LINER NGC 4203

    Get PDF
    We present spectroscopic observations from the Hubble Space Telescope that reveal for the first time the presence of a broad pedestal of Balmer-line emission in the LINER galaxy NGC 4203. The emission-line profile is suggestive of a relativistic accretion disk, and is reminiscent of double-peaked transient Balmer emission observed in a handful of other LINERs. The very broad line emission thus constitutes clear qualitative evidence for a black hole, and spatially resolved narrow-line emission in NGC 4203 can be used to constrain its mass, with M_BH less than 6 x 10^6 solar masses at 99.7% confidence. This value implies a ratio of black-hole mass to bulge mass of less than approximately 7 x 10^-4 in NGC 4203, which is less by a factor of ~3 - 9 than the mean ratio obtained for other galaxies. The availability of an independent constraint on central black-hole mass makes NGC4203 an important testbed for probing the physics of weak active galactic nuclei. Assuming M_BH near the detection limit, the ratio of observed luminosity to the Eddington luminosity is approximately 10^-4. This value is consistent with advection-dominated accretion, and hence with scenarios in which an ion torus irradiates an outer accretion disk that produces the observed double-peaked line emission. Follow-up observations will make it possible to improve the black-hole mass estimate and study variability in the nuclear emission.Comment: 10 pages (LaTeX, AASTeX v4.0), 2 postscript figures, accepted for publication in The Astrophysical Journal Letter

    The Broad-Line and Narrow-Line Regions of the LINER NGC 4579

    Full text link
    We report the discovery of an extremely broad H-alpha emission line in the LINER nucleus of NGC 4579. From ground-based observations, the galaxy was previously known to contain a Type 1 nucleus with a broad H-alpha line of FWHM = 2300 km/s and FWZI ~ 5000 km/s. New spectra obtained with the Hubble Space Telescope and a 0.2 arcsec-wide slit reveal an H-alpha component with FWZI ~ 18,000 km/s. The line is not obviously double-peaked, but it does possess shoulders on the red and blue sides which resemble the H-alpha profiles of double-peaked emitters such as NGC 4203 and NGC 4450. This similarity suggests that the very broad H-alpha profile in NGC 4579 may represent emission from an accretion disk. Three such objects have been found recently in two HST programs which have targeted a total of 30 galaxies, demonstrating that double-peaked or extremely broad-line emission in LINERs must be much more common than would be inferred from ground-based surveys. The ratio of the narrow [S II] 6716, 6731 lines shows a pronounced gradient indicating a steep rise in density toward the nucleus. The direct detection of a density gradient within the inner arcsecond of the narrow-line region confirms expectations from previous observations of linewidth-critical density correlations in several LINERs.Comment: 8 pages, includes 3 figures. To appear in The Astrophysical Journa

    Double-Peaked Broad Emission Lines in NGC 4450 and Other LINERs

    Get PDF
    Spectra taken with HST reveal that NGC 4450 emits Balmer emission lines with displaced double peaks and extremely high-velocity wings. This characteristic line profile, previously seen in a few nearby LINERs and in a small fraction of broad-line radio galaxies, can be interpreted as a kinematic signature of a relativistic accretion disk. We can reproduce the observed profile with a model for a disk with a radial range of 1000-2000 gravitational radii and inclined by 27 degrees along the line of sight. The small-aperture HST data also allow us to detect, for the first time, the featureless continuum at optical wavelengths in NGC 4450; the nonstellar nucleus is intrinsically very faint, with M_B = -11.2 mag for D = 16.8 Mpc. We have examined the multiwavelength properties of NGC 4450 collectively with those of other low-luminosity active nuclei which possess double-peaked broad lines and find a number of common features. These objects are all classified spectroscopically as "type 1" LINERs or closely related objects. The nuclear luminosities are low, both in absolute terms and relative to the Eddington rates. All of them have compact radio cores, whose strength relative to the optical nuclear emission places them in the league of radio-loud active nuclei. The broad-band spectral energy distributions of these sources are most notable for their deficit of ultraviolet emission compared to those observed in luminous Seyfert 1 nuclei and quasars. The double-peaked broad-line radio galaxies Arp 102B and Pictor A have very similar attributes. We discuss how these characteristics can be understood in the context of advection-dominated accretion onto massive black holes.Comment: To appear in The Astrophysical Journal. Latex, 15 pages, embedded figures and tabl

    The Magnificent Seven: Magnetic fields and surface temperature distributions

    Get PDF
    Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name ``The Magnificent Seven''. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and / or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 10^13 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging

    Reflection in Seyfert Galaxies and the Unified Model of AGN

    Full text link
    We present a deep study of the average hard X-ray spectra of Seyfert galaxies. We analyzed all public INTEGRAL IBIS/ISGRI data available on all the 165 Seyfert galaxies detected at z<0.2. Our final sample consists of 44 Seyfert 1's, 29 Seyfert 1.5's, 78 Seyfert 2's, and 14 Narrow Line Seyfert 1's. We derived the average hard X-ray spectrum of each subsample in the 17-250keV energy range. All classes of Seyfert galaxies show on average the same nuclear continuum, as foreseen by the zeroth order unified model, with a cut-off energy of Ec>200keV, and a photon index of Gamma ~1.8. Compton-thin Seyfert 2's show a reflection component stronger than Seyfert 1's and Seyfert 1.5's. Most of this reflection is due to mildly obscured (10^23 cm^-2 < NH < 10^24 cm^-2) Seyfert 2's, which have a significantly stronger reflection component (R=2.2^{+4.5}_{-1.1}) than Seyfert 1's (R<=0.4), Seyfert 1.5's (R<= 0.4) and lightly obscured (NH < 10^23 cm^-2) Seyfert 2's (R<=0.5). This cannot be explained easily by the unified model. The absorber/reflector in mildly obscured Seyfert 2's might cover a large fraction of the X-ray source, and have clumps of Compton-thick material. The large reflection found in the spectrum of mildly obscured Seyfert 2's reduces the amount of Compton-thick objects needed to explain the peak of the cosmic X-ray background. Our results are consistent with the fraction of Compton-thick sources being ~10%. The spectra of Seyfert 2's with and without polarized broad lines do not show significant differences, the only difference between the two samples being the higher hard X-ray and bolometric luminosity of Seyfert 2's with polarized broad lines. The average hard X-ray spectrum of Narrow line Seyfert 1's is steeper than those of Seyfert 1's and Seyfert 1.5's, probably due to a lower energy of the cutoff.Comment: 19 pages, accepted for publication in Astronomy and Astrophysics, final versio

    Rare central nervous system tumors in adults:a population-based study of ependymomas, pilocytic astrocytomas, medulloblastomas, and intracranial germ cell tumors

    Get PDF
    BACKGROUND: Ependymomas, pilocytic astrocytomas, medulloblastomas, and intracranial germ cell tumors occur relative frequently in children, but are rare central nervous system (CNS) tumors in adults. In this population-based survey, we established incidence, treatment, and survival patterns for these tumors diagnosed in adult patients (≥18 years) over a 30-year period (1989-2018). METHODS: Data on 1384 ependymomas, 454 pilocytic astrocytomas, 205 medulloblastomas, and 112 intracranial germ cell tumors were obtained from the Netherlands Cancer Registry (NCR) on the basis of a histopathological diagnosis. For each tumor type, age-standardized incidence rates and estimated annual percentage change were calculated. Trends in incidence and main treatment modalities were reported per 5-year periods. Overall survival was calculated using the Kaplan-Meier method, and relative survival rates were estimated using the Pohar-Perme estimator. RESULTS: Incidence and survival rates remained generally stable for pilocytic astrocytomas, medulloblastomas, and germ cell tumors. Increasing incidence was observed for spinal ependymomas, mostly for myxopapillary ependymomas, and survival improved over time for grade II ependymomas (P < .01). Treatment patterns varied over time with shifting roles for surgery in ependymomas and for chemotherapy and radiation in medulloblastomas and germinomas. CONCLUSIONS: The study provides baseline information for highly needed national and international standard treatment protocols, and thus for further improving patient outcomes in these rare CNS tumors

    Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination.

    Get PDF
    Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination
    corecore